Login
 Forum
 
by doctoral school by research field by research topic  
Thesis topic proposals by doctoral schools
Please select an institution, a doctoral school or provide the identification number of the doctoral school
 
name of institution
doctoral school
identification number of the doctoral school
abbreviation of location of studies
sorted by deadline
topics both in English and Hungarian
 
Current thesis topic proposals of Eötvös Loránd University, Budapest, Doctoral School of Mathematics

thesis supervisor

research topic

deadline for application

location of studies (in Hungarian)
Zoltán BuczolichGeometric and dynamical aspects of measure and real function theory2017-05-31ELTE
Balázs CsikósHarmonic manifolds2017-05-31ELTE
Balázs CsikósHarmonic manifolds2017-05-31ELTE
Alice FialowskiFiliform Lie algebras and their cohomology2017-05-31ELTE
Alice FialowskiOn Jacobi-Jordan algebras2017-05-31ELTE
Alice FialowskiLeibniz algebras2017-05-31ELTE
Alice FialowskiElectrical Lie algebras2017-05-31ELTE
András FrankUnweighted Graph Optimization2017-05-31ELTE
Ferenc IzsákFractional diffusion with Neumann type boundary conditions2017-05-31ELTE
Tibor JordánCombinatorial rigidity2017-05-31ELTE
János KarátsonComparative analysis of some preconditioned iterative methods for PDEs2017-05-31ELTE
Tamás KirályPolyhedral methods in combinatorial optimization2017-05-31ELTE
Gergely Mádi-NagyApplications in Energy Market2017-05-31ELTE
Gergely Mádi-NagyDiscrete moment problems and its applications2017-05-31ELTE
Márton NaszódiCovering problems in discrete geometry2017-05-31ELTE
Márton NaszódiCovering problems in discrete geometry2017-05-31ELTE
Tamás RudasComparison of structural equation modeling and graphical modeling2017-05-31ELTE
Péter SziklaiAlgebraic and combinatorial methods in symmetric structures2017-05-31ELTE
Tamás SzőnyiFinite Geometry2017-05-31ELTE
Gergely ZábrádiThe p-adic Langlands programme2017-05-31ELTE

 
All rights reserved © 2007, Hungarian Doctoral Council. Doctoral Council registration number at commissioner for data protection: 02003/0001. Program version: 1.2357 ( 2017. V. 15. )